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Non-Boltzmann behavior from the Boltzmann equation
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We compute the stress autocorrelation function in a two- and three-dimensional system by using the
lattice-Boltzmann method. The algebraic long-time behavior ~¢ ~%/2 in the stress correlation function is
clearly observed. The amplitude of this tail is compared with the mode-coupling expression for the
long-time tail in the stress correlation function. Agreement is found between the mode-coupling theory

and simulation in both two and three dimensions.
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L INTRODUCTION

In 1970 Alder and Wainwright [1] reported the results
of a computer simulation study of the decay of velocity
fluctuations in a hard-sphere fluid. These simulations re-
vealed that velocity fluctuations do not decay exponen-
tially, as had been previously assumed, but algebraically.
This observation was of great importance because nonex-
ponential decay of the velocity autocorrelation function
(velocity ACF) is not compatible with Boltzmann’s
“molecular chaos” hypothesis, i.e., the assumption that
there is no correlation between the velocity of a particle
at time ¢ and the velocity of its collision partners at any
later time.

Subsequently, mode coupling [2] and kinetic theories
[3] were developed to provide a theoretical framework for
the description of long-time tails in correlation functions.
Both classes of theory reproduce the algebraic decay of
the velocity, ACF, ¢(t)~t~%/2, where d is the dimen-
sionality of the fluid and ¢ the time. In addition, the same
theories also predict an algebraic long-time tail in the
stress correlation function. The mode-coupling theory
prediction for the asymptotic form of the stress auto-
correlation function is [2]
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In this equation, quy(t) is the correlation function for the
xy component of the stress tensor, p is the number densi-
ty, v is the ““bare” kinematic viscosity, and T is the sound
wave damping coefficient. Unlike the long-time tail in
the velocity ACF, the algebraic tail in the stress correla-
tion function has not been observed directly either in
simulations or in experiment, except in a very simple
one-dimensional model [4] that does not really corre-
spond to a fluid.

The most accurate tests of mode-coupling theory in a
realistic system were obtained in simulations of a
simplified model for an atomic fluid, namely a lattice-gas
cellular automaton of the type introduced by Frisch,
Hasslacher, and Pomeau [5]. Kadanoff, McNamara, and
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Zanetti [6] investigated the stress-stress correlation func-
tion indirectly by comparing the apparent viscosity of
such a fluid with theoretical predictions based on mode-
coupling theory. They investigated the system size
dependence of the kinematic viscosity, and found the ex-
pected logarithmic divergence. For the velocity auto-
correlation function, Frenkel and Ernst [7] exploited
some special features of the lattice gas and computed the
velocity ACF of a tagged particle with an accuracy that
was at least four orders of magnitude better than was
hiterto possible. Unfortunately, the same approach can-
not be used to improve the accuracy of the calculation of
the stress autocorrelation function. For the velocity ACF
of a tagged particle in a lattice gas, it proved possible to
perform an average over all possible labelings of the
tagged particle. In contrast, no such averaging can be
performed in the case of stress, which is a collective,
rather than single-particle property. As a consequence,
the stress correlation function is very noisy. It would
seem attractive to try to improve the statistics of the
stress ACF by performing some kind of pre-averaging
that does reduce the statistical fluctuations but not the
way in which stress decays in the lattice-gas fluid. A nat-
ural pre-averaged version of a lattice-gas cellular automa-
ton fluid is the so-called lattice-Boltzmann model [8,9].
The advantage of the lattice-Boltzmann model is that one
can study the decay of an initial perturbation of the stress
without any statistical noise. The disadvantage is that,
due to the pre-averaging, it is no longer a truly atomistic
model. Moreover, the pre-averaging has ended all spon-
taneous fluctuations. Hence, the way to study the stress
ACEF is not to watch the decay of spontaneous fluctua-
tions in the stress (there are none), but to make use of
Onsager’s regression hypothesis and study the decay of
an imposed perturbation of the stress. In this paper, we
report calculations of the stress ACF, using a lattice-
Boltzmann model.

At first sight, it may seem strange to look for long-time
tails in a Boltzmann model. After all, in the Boltzmann
equation that determines the time evolution of this lattice
model, one ignores the correlations between successive
collisions that, in the kinetic theory description, give rise
to long-time tails. Yet, the lattice-Boltzmann model does
reproduce the hydrodynamic behavior of a fluid. In the
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mode-coupling theories of long-time tails in simple fluids,
it is precisely the slow decay of hydrodynamic modes that
is responsible for the appearance of long-time tails (that
are, for this reason, often referred to as hydrodynamic
long-time tails).

II. LATTICE-BOLTZMANN MODEL

The lattice-Boltzmann model is a pre-averaged version
of a lattice-gas cellular automaton (LGCA) model of a
fluid. In lattice-gas cellular automaton the state of the
fluid at any (discrete) time is specified by the number of
particles at every lattice site and their velocity. Particles
can only move in a limited number of directions (towards
neighboring lattice points) and there can be at most one
particle moving on a given “link.” The time evolution of
the LGCA consists of two steps. (1) Propagation: every
particle moves in one time step, along its link to the next
lattice site. (2) Collision: at every lattice site particles
can change their velocities by collision, subject to the
condition that these collisions conserve the number of
particles and momentum (and retain the full symmetry of
the lattice). In the lattice-Boltzmann method (see, e.g.,
[10]), the state of the fluid system is no longer character-
ized by the number of particles that move in direction c;
on lattice site r, but by the probability to find such a parti-
cle. The single-particle distribution function »;(r,t) de-
scribes the average number of particles at a particular
node of the lattice r, at a time ¢, with the discrete velocity
c;. The hydrodynamic fields, mass density p, momentum
density j, and the momentum flux density Il are simply
moments of this velocity distribution,

p=>n;, j=3nc;, I=73F n;cc; . )
i i i

The lattice model used in this work is the four-
dimensional face-centered hypercubic (FCHC) lattice. A
two- or three-dimensional model can then be obtained by
projection in the required number of dimensions. This
FCHC model is used because three-dimensional cubic lat-
tices do not have a high enough symmetry to ensure that
the hydrodynamic transport coefficients are isotropic.

The time evolution of the distribution functions n; is
described by the discretized analogue of the Boltzmann
equation [11],

n;(r+c;,t +1)=n;(r,t)+Ai(r,t), (3)

where A; is the change in n; due to instantaneous molecu-
lar collisions at the lattice nodes. The post-collision dis-
tribution n; +A; is propagated in the direction of the ve-
locity vector c;. A complete description of the collision
process is given in [12]. The main effect of the collision
operator A;(r,?) is to relax the nonequilibrium part of the
momentum flux. The nonlinear expression for the local
equilibrium momentum flux density II° is given by

n*=pI+puu, (4)

with p the local pressure, I the unit tensor, and u the lo-
cal fluid velocity. In the linearized version of the equilib-
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rium part of the momentum flux density is given by
med=pI . (5)

The rate of stress relaxation, or equivalently, the kine-
matic viscosity v, can be chosen almost freely (as dis-
cussed in [9]). In the linear lattice-Boltzmann model [Eq.
(5)] II,, can only decay exponentially. To observe the
long-time behavior of the stress ACF, a coupling to the
momentum is essential. The second term in Eq. (4),
which is usually only taken into account to study high
Reynolds number flow, does exactly this. In order to ob-
serve the long-time tail in the stress ACF, the full non-
linear stress tensor had to be used in the simulation.

As the lattice-Boltzmann model is purely dissipative,
microscopic fluctuations in the fluid are not included.
Such fluctuations can be incorporated in the lattice-
Boltzmann model by adding a suitable random noise term
to the stress [13]. However, for the present work, such
fluctuations are not essential for the phenomenon under
study yet would seriously deteriorate the statistical accu-
racy of our calculations.

The stress in the system, which is a collective property,
is given by

== (I—pl). 6)

For the sake of convenience, we consider only one com-
ponent of the traceless symmetric part of the stress tensor
viz. the xy component. Other components give rise to
the same correlation functions. We compute the stress
ACEF by correlating the initial perturbation of the stress
with the stress at some later time ¢,

()= (A3, (0)AZ,, (1))
i ([AZ,,(0)]*)

) @)

where AZ,, =3, (1)—Z2,,(0). It is important to sub-
tract the steady state (= oo ) value of the stress tensor
because, in a finite system, the initial stress perturbation
will relax to a uniform velocity field with an associated
stress given by Eq. (4),

2,,(0)

2y (0)=—0—, 8)
where V is the volume of the fluid. In a LGCA, where
the stress is purely kinetic in origin, the stress at site r at
time ¢ is uncorrelated to the stress at that same time at
any other lattice point. In our calculations we have
therefore chosen to consider the simplest possible initial
condition viz. a small perturbation of the stress at one
lattice site only.

III. RESULTS

Having set up the system with an initial local stress
perturbation, we followed the time evolution of the total
stress of the system using the dynamics of the lattice-
Boltzmann model. In fact, we did the simulations both
for the linearized and the nonlinear expression for the
stress tensor. All quantities were measured in lattice
units, such that the lattice spacing, time step, and particle
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mass are all set to unity.

In order to be able to compare the tail amplitude as ob-
tained from the simulations with the theoretical expres-
sion [Eq. (1)] we need to know the sound damping
coefficient I'. At the Boltzmann level, this quantity is
given by '=2(d —)v/d +¢§ with § being the kinematic
bulk viscosity. v and § were ‘“measured” by setting up a
sound wave in the system and measuring the decay of
that wave in the long wavelength limit [14]. T, §, and v
were computed for a range of imposed kinematic viscosi-
ties between 0.01 and 0.50.

The simulations in two dimensions were performed on
a system of 250X 250 lattice sites. For this size of simula-
tion box we followed the stress ACF for 140 time steps.
This upper limit was chosen because, after this time, in-
terference occurred due to sound waves that cross the
periodic system. In Fig. 1, we show the stress ACF of the
lattice-Boltzmann model for several different values of
the kinematic viscosity and the nonlinear expression for
the stress. For this model, we do indeed observe a clear
algebraic decay of the stress ACF. As expected for a
two-dimensional fluid, the exponent of the algebraic
long-time tail was —1. In contrast, no algebraic tail is
observed if the nonlinear terms in the stress are ignored.
This is understandable because in the linearized model
there is no mechanism by which the different modes can
couple.

The limiting value d, was determined by plotting
td,,(2) as a function of 1/¢. The intercept for 1/t =0
yields the desired amplitude. The results of this analysis
are shown in Fig. 2. In this figure, we also show the
theoretical tail coefficient given by Eq. (1). Figure 2
shows that the mode-coupling predictions of the tail
coefficient are in excellent agreement with the simulation
results. The discrepancy between the mode-coupling
theory and the simulation results is less than one tenth of
a percent.

The simulations in three dimensions were performed

v=0.2
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-v=0.4

log,t

FIG. 1. The normalized stress autocorrelation function ¢,,
of a two-dimensional lattice-gas fluid at a dimensionless kine-
matic viscosity of v=0.2, 0.3, 0.4 as a function of time. Time is
expressed in units of the discrete time step in the lattice model.
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FIG. 2. The tail coefficient of the stress ACF for a two-
dimensional lattice-gas fluid, as a function of the dimensionless
kinematic viscosity v. The points are the results of simulations
of the lattice-Boltzmann model, while the drawn curve corre-
sponds to the prediction of the mode-coupling theory.

on a system of 90X90X90 lattice sites. For this size
simulation box we followed the stress ACF for times up
to t=50. After this time, interference due to the
roundtrip of sound waves occurred. In the three-
dimensional fluid, we also find algebraic decay of the
stress ACF in the nonlinear lattice-Boltzmann model
only. The algebraic tail is characterized by an exponent
—1.5, as expected. Figure 3 shows the stress ACF of the
three-dimensional lattice-Boltzmann fluid for several
values of the kinematic viscosity.

We performed the same extrapolation procedure as de-
scribed above to determine the amplitude of the long-
time tail. Specifically, we plotted 73/ 2(15xy(t) as a function
of 1/t. As before, the amplitude of the algebraic tail d is

10g;69,,(t)

FIG. 3. The normalized stress autocorrelation function ¢,,
of a three-dimensional lattice-gas fluid at a dimensionless kine-
matic viscosity of v=0.2, 0.3, 0.4 as a function of time. Time is
expressed in units of the discrete time step in the lattice model.
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FIG. 4. The tail coefficient of the stress ACF for a three-
dimensional lattice-gas fluid, as a function of the dimensionless
kinematic viscosity v. The points are the results of simulations
of the lattice-Boltzmann model, while the drawn curve line cor-
responds to the prediction of the mode-coupling theory.

obtained from the intercept of £/’ (1) in the limit
1/t—0.

Figure 4 shows a comparison of the tail coefficient ob-
tained from the simulations, with the corresponding
model-coupling prediction [Eq. (1)]. As can be seen from
this figure, there is again quantitative agreement between
mode-coupling theory and the simulation results. The
discrepancy is of the order of one percent, somewhat
greater than in two dimensions, however, in the three di-
mensions there is a larger error associated with the extra-
polation procedure because the data do not extend to
such long times.

In the three-dimensional system we have also comput-
ed to what extent the long-time tail in the stress ACF
changes the “bare” kinematic viscosity v which was com-
puted at the Boltzmann level. This is done by using the
Green-Kubo formula for the viscosity [15]

t
Vhydro(t)~%¢xy(o)+ 2 ¢xy(t’) . (9)

t'=1

Asymptotically, vyy40(2)~2'/? [from Eq. (1)], and in this
way extrapolation was performed to find
Vhydro — M, _, Vpyaro(?). The result of this calculation is
shown in Table I. Note that the algebraic long-time tail

TABLE 1. The relative effect of the hydrodynamic long-time
tail in the stress autocorrelation function on the dimensionless
viscosity in three dimensions.

v (Vhydron ™ V) /¥
0.1 0.171
0.2 0.079
0.3 0.053
0.4 0.041
0.5 0.033
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FIG. 5. The normalized stress autocorrelation function ¢,,
of a three-dimensional lattice-gas fluid, with a symmetric stress,
at a dimensionless kinematic viscosity of v=0.2, 0.3, 0.4 as a
function of time. Time is expressed in units of the discrete time
step used in the lattice model.

results in a small renormalization of the viscosity. The
same calculation was not performed in two dimensions,
because the renormalized kinematic viscosity diverges in
that case.

In the three-dimensional system we have also com-
pared different initial stresses. In the examples discussed
above, the initial stress corresponds to a perturbation of
the velocity of an arbitrary node r. This is the correct
way to impose kinematic stress, because such stresses are
in practice due to local fluctuations in the velocity distri-
butions of particles: these fluctuations are uncorrelated.
In this way the total momentum in the fluid was also in-
creased, see Eq. (2). For the sake of comparison we also
considered a symmetric initial stress such that no
momentum was introduced in the fluid . The resulting
stress ACF for this system is shown in Fig. 5. We see
that the exponent of the algebraic long-time tail is now
—2.5. This is not surprising because the leading contri-
bution to the tail is canceled exactly. Although these
tails clearly do not correspond to the decay of the kine-
matic part of the stress tensor [16], they may correctly
describe the decay of the symmetric stresses, such as
those caused by interparticle forces. In the two-
dimensional system the computation was also performed,
and the exponent of the algebraic long-time tail was
found to be —2.

IV. CONCLUSIONS

We have computed the stress ACF of a lattice-
Boltzmann fluid and compared the results with the
mode-coupling theory. We find that both the exponent of
the algebraic long-time tail (—d /2) and its amplitude
(dy) are in essentially quantitative agreement with the
mode-coupling theory The computation of the time
dependent viscosity in three dimensions shows that, at
least for the simple lattice-gas model studied in this work,
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the hydrodynamic long-time tail of the stress ACF results

in a small correction to the Boltzmann prediction of the
kinematic viscosity.
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